2. Measuring and analysing skills mismatch in the labour market

CEF Online Learning Campus

Anneleen Vandeplas

ECFIN B2 – Economics of structural reforms and investment
Context

• Skills mismatch « hot topic » after the 2009 crisis
 • Shift to the right in Beveridge curve
 • Skills shortages (e.g. IT-sector) and labour shortages
 • « Overqualification »

➢ Need to bring clarity to the debate, notably for country-level analysis for the European Semester

➢ Cross-country comparable data allows benchmarking performance

Source: EC draft Joint Employment Report 2021
Definition: Weighted relative dispersion of employment rates across skills groups (low-, medium-, high-skilled) (based on ESTAT LFS data)
Skills shortages in the industry sector

Definition: Proportion of employers indicating that labour is a major factor limiting their production. Source: EU-BCS data
On-the-job mismatch: underqualification

Definition: Proportion of employment that works in jobs requiring higher qualifications than they have. Based on ILO (2007) methodology and ESTAT LFS data.
On-the-job mismatch: overqualification

Definition: Proportion of employment that works in jobs requiring lower qualifications than they have. Based on ILO (2007) methodology and ESTAT LFS data.
Are mismatches increasing over time in EU27?

Macro-economic mismatch is declining

Skills shortages are increasing

... but influenced by the cycle
Impact of Covid on employment (persons)

- High-qualified generally better shielded against the pandemic
 - More likely to be able to telework
 - Less likely to work in contact-intensive jobs
- Those who were already more vulnerable before the crisis have suffered more in economic as well as in health terms
DOES RISING SKILLS MISMATCH HAMPER PRODUCTIVITY GROWTH?
Empirical approach

• **Reduced form model**: labour productivity is a function of human capital H, skills mismatch S and cyclical factors (output gap) X:

$$LP_{i,t} = c_i + \beta H_{i,t} + \gamma S_{Hi,t} + \delta X_{i,t} + \epsilon_{i,t}$$

• **Estimation**: panel fixed effects and random effects exploiting within-country variation and cross-country variation

• **Possible channels**: human capital and skills mismatch can affect LP through
 • TFP (through enhancing innovation and absorbing knowledge)
 • capital intensity (complementarities with human capital)
Impact of education on productivity

- Generally, positive impact of education on productivity
- However, this impact on productivity is stronger if high-qualified workers work in high-skilled jobs
 - Importance of quality assurance and economic policies

Skills mismatch and productivity: a complex relationship

<table>
<thead>
<tr>
<th>Skills mismatch indicator</th>
<th>Expected relationship</th>
<th>Empirical relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro-economic skills mismatch</td>
<td>(+) as high macro-economic skills mismatch is associated with low employment rates of lower qualified individuals and labour productivity is expected to be higher if employment is biased towards the higher-qualified</td>
<td>(-) for the full sample, possibly due to strong correlation with economic growth (+) for the EU-15</td>
</tr>
<tr>
<td>Skills shortages</td>
<td>(-)</td>
<td>(+) possibly due to strong correlation with economic growth</td>
</tr>
<tr>
<td>Overqualification</td>
<td>(+) within a given job category, (-) within a given qualification</td>
<td>(+) within a given job category, (-) within a given qualification</td>
</tr>
<tr>
<td>Underqualification</td>
<td>(-) within a given job category, (+) within a given qualification</td>
<td>(-) within a given job category, (+) within a given qualification</td>
</tr>
</tbody>
</table>

Source: Vandeplas, A. and A. Thum-Thysen (2019) “Skills mismatch and productivity in the EU”, DG ECFIN Discussion Paper No. 100. Table summarizes results based on a regression of productivity on measures of skills mismatch, controlling for skill levels and country-specific effects and the output gap.
WHICH SKILLS DO WE NEED FOR THE FUTURE?
Skills transition for a digital economy

From skills of the past…
manual, routine-based skills

… to skills of the future

Digital skills
ICT and STEM
Foundational skills
Non-cognitive skills
Empirical analysis of PIAAC data

- **Foundation skills**: literacy, numeracy, problem-solving
- **Digital skills**: basic versus complex digital skills
- **Aggregate cognitive skills indicator**
- **Non-cognitive skills**:
 - Self-organization, interaction and communication, managing and supervision, readiness to learn and creativity, trust in persons, conscientiousness
 - Aggregate non-cognitive skills indicator
- **Physical skills**
• NL, EE best performers in **cognitive** skills

• DK, FI, SE best performers in **non-cognitive (soft)** skills

• SI, LT most frequent users of **physical** skills

• No significant correlation between cognitive skills and other types of skills **at the country level.**
Variation in skills by sector (EU-average)

- **Finance & Insurance, ICT**: highest cognitive and non-cognitive skills, lowest physical skills
- **Agriculture, construction**: most frequent use physical skills
 - Cognitive & non-cognitive skills positively correlated, negatively to physical skills

Sectors: A: Agriculture; B-E: Industry; F: Construction; G-I: Trade, food & accommodation; J: ICT; K: Finance and Insurance; L: Real estate; M_N: Professional and business services; O-Q: Public sector; R-U: Arts, entertainment etc.
Non-cognitive skills matter for productivity

<table>
<thead>
<tr>
<th>Skill</th>
<th>Correlation with productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical skills</td>
<td>(-)***</td>
</tr>
<tr>
<td>Numeracy</td>
<td>(+)***</td>
</tr>
<tr>
<td>Literacy</td>
<td>(+)***</td>
</tr>
<tr>
<td>Problem-solving</td>
<td>(+)***</td>
</tr>
<tr>
<td>ICT skills – complex</td>
<td>(+)***</td>
</tr>
<tr>
<td>ICT skills – simple</td>
<td>(+)***</td>
</tr>
<tr>
<td>Cognitive skills - aggregate</td>
<td>(+)***</td>
</tr>
<tr>
<td>Readiness to learn and creative thinking</td>
<td>(+)***</td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>(+)***</td>
</tr>
<tr>
<td>Trust in persons</td>
<td>(+)***</td>
</tr>
<tr>
<td>Interaction and communication</td>
<td>(+)***</td>
</tr>
<tr>
<td>Managing and supervision</td>
<td>(+)***</td>
</tr>
<tr>
<td>Self-organisation</td>
<td>0</td>
</tr>
<tr>
<td>Non-cognitive skills - aggregate</td>
<td>(+)***</td>
</tr>
</tbody>
</table>

CONCLUSION AND POLICY IMPLICATIONS
Conclusions and policy implications

• Human capital investment is key in technology adoption, productivity and growth ***not only quantity of spending matters, but also efficiency of spending to target quantity, quality and inclusion***

• Lower skills mismatch is associated with good economic performance ***boost skills supply*** (e.g. invest in upskilling and reskilling) and ***demand*** (e.g. promote job creation in skills-intensive sectors)

• Building “skills for the digital economy” to foster productivity requires a multi-pronged approach ***boost digital and cognitive skills, but also non-cognitive skills such as self-organisation or teamwork*** (for instance through curricula design)
Policy levers

What can national governments do?

- Reforms of education, training & skills systems (incl. adult learning) and broader economic policies (business environment, public administration, R&D…).

What can the EU do?

- In the EU:
 - Broad policy guidance through initiatives such as the European Education Area, European Skills Agenda, Digital Education Action Plan, …
 - Country-specific policy guidance through the European Semester.
 - Support for reforms and investment through NextGenerationEU (Recovery and Resilience Facility & Technical Support Instrument) and other instruments in 2021-27 MFF: ESF+, Erasmus+, ERDF, EGF, Just Transition Fund, REACT-EU, Brexit Adjustment reserve, …

- In accession countries:
 - Instrument for pre-accession assistance, Technical Assistance and Information Exchange instrument (TAIEX).
References

• Follow-up work:
Thank you

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the CC BY 4.0 license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Slide xx: element concerned, source: e.g. Fotolia.com; Slide xx: element concerned, source: e.g. iStock.com
Macro-economic skills mismatch

- **Downward trend** in Northern-Macedonia
- **Upward trend** in Turkey
- **Serbia**: decline until 2016, and stabilization since then
- **Montenegro**: decline until 2018, pick up since then
Skills shortages
Country-level variation in skills levels, industry sector (NACE B-E)

- Industry sector more knowledge intensive in NL, DK, SK than in CY, EL and FR.
- Physical skills more important in LT, SI, PL than in FI, BE, FR.
- Result of industrial specialisation & organization of production processes (influenced by economic conditions & policies)